Skip to main content

Posts

Showing posts from June, 2021

Coefficient of Lift

                                                                                     Lift Coefficient: Coefficient of lift C L is defined as the lifting ability of the wing which depends on geometry of the airfoil. Coefficient of Lift Changes with change in angle of attack and it differs for symmetric and Assymetric airfoils. To Know about Coefficient of lift C L we plot the variation of lift with change in angle of attack. For asymmetric airfoil at 0 degree of angle of attack the lift generated is minimum and at 15-16 degrees its maximum which is called C L max . Angle of attack remains a straight line between 0 -12 Degrees. Above 12 Degrees rate of increase in lift reduces and forms a peak. The Peak formed denotes the maximum Angle Of attack C L max . At angles of attack beyond this point Coefficient of lift C L decreases which tends to reduce the lift.  Now the Airfoil is stalled and it cannot produce further lift to maintain steady straight and levelled flight. The Angle at

LIFT

Lift Lift is a force generated by the airfoil when the airfoil moves in a streamlined airflow at aerodynamic speeds (above 80 Km/h) with increasing angle of attack. Amount of lift generated by the wing depends on the following parameters. Wing shape Angle of attack Density of Air Wing Plan form surface area Square of free stream air velocity Lifting efficiency of wing A fast moving fluid creates a dynamic pressure with the airfoil, which is half times the density multiplied by velocity squared. Lifting efficiency of wing depends on wing shape and angle of attack which is usually expressed as Coefficient of lift.                          Lift = Co efficient of Lift X Pressure X Area Lift varies for different type of airfoils with change in angle of attack, Lift is expressed in Newton (N) and the general lift formula is                          L = ½ X ρ X V 2